Package org.apache.spark.mllib.tree.loss
Class LogLoss
Object
org.apache.spark.mllib.tree.loss.LogLoss
Class for log loss calculation (for classification).
 This uses twice the binomial negative log likelihood, called "deviance" in Friedman (1999).
 
The log loss is defined as: 2 log(1 + exp(-2 y F(x))) where y is a label in {-1, 1} and F(x) is the model prediction for features x.
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionstatic doublegradient(double prediction, double label) Method to calculate the loss gradients for the gradient boosting calculation for binary classification The gradient with respect to F(x) is: - 4 y / (1 + exp(2 y F(x)))
- 
Constructor Details- 
LogLosspublic LogLoss()
 
- 
- 
Method Details- 
gradientpublic static double gradient(double prediction, double label) Method to calculate the loss gradients for the gradient boosting calculation for binary classification The gradient with respect to F(x) is: - 4 y / (1 + exp(2 y F(x)))- Parameters:
- prediction- Predicted label.
- label- True label.
- Returns:
- Loss gradient
 
 
-