Package org.apache.spark.ml.feature
Interface QuantileDiscretizerBase
- All Superinterfaces:
- HasHandleInvalid,- HasInputCol,- HasInputCols,- HasOutputCol,- HasOutputCols,- HasRelativeError,- Identifiable,- Params,- Serializable
- All Known Implementing Classes:
- QuantileDiscretizer
public interface QuantileDiscretizerBase
extends Params, HasHandleInvalid, HasInputCol, HasOutputCol, HasInputCols, HasOutputCols, HasRelativeError
Params for 
QuantileDiscretizer.- 
Method SummaryModifier and TypeMethodDescriptionintint[]Param for how to handle invalid entries.Number of buckets (quantiles, or categories) into which data points are grouped.Array of number of buckets (quantiles, or categories) into which data points are grouped.Methods inherited from interface org.apache.spark.ml.param.shared.HasHandleInvalidgetHandleInvalidMethods inherited from interface org.apache.spark.ml.param.shared.HasInputColgetInputCol, inputColMethods inherited from interface org.apache.spark.ml.param.shared.HasInputColsgetInputCols, inputColsMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputColgetOutputCol, outputColMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputColsgetOutputCols, outputColsMethods inherited from interface org.apache.spark.ml.param.shared.HasRelativeErrorgetRelativeError, relativeErrorMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoString, uidMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Method Details- 
getNumBucketsint getNumBuckets()
- 
getNumBucketsArrayint[] getNumBucketsArray()
- 
handleInvalidParam for how to handle invalid entries. Options are 'skip' (filter out rows with invalid values), 'error' (throw an error), or 'keep' (keep invalid values in a special additional bucket). Note that in the multiple columns case, the invalid handling is applied to all columns. That said for 'error' it will throw an error if any invalids are found in any column, for 'skip' it will skip rows with any invalids in any columns, etc. Default: "error"- Specified by:
- handleInvalidin interface- HasHandleInvalid
- Returns:
- (undocumented)
 
- 
numBucketsIntParam numBuckets()Number of buckets (quantiles, or categories) into which data points are grouped. Must be greater than or equal to 2.See also handleInvalid(), which can optionally create an additional bucket for NaN values.default: 2 - Returns:
- (undocumented)
 
- 
numBucketsArrayIntArrayParam numBucketsArray()Array of number of buckets (quantiles, or categories) into which data points are grouped. Each value must be greater than or equal to 2See also handleInvalid(), which can optionally create an additional bucket for NaN values.- Returns:
- (undocumented)
 
 
-