public class MulticlassMetrics
extends java.lang.Object
param: predictionAndLabels an RDD of (prediction, label) pairs.
| Constructor and Description | 
|---|
| MulticlassMetrics(RDD<scala.Tuple2<java.lang.Object,java.lang.Object>> predictionAndLabels) | 
| Modifier and Type | Method and Description | 
|---|---|
| double | accuracy()Returns accuracy
 (equals to the total number of correctly classified instances
 out of the total number of instances.) | 
| Matrix | confusionMatrix()Returns confusion matrix:
 predicted classes are in columns,
 they are ordered by class label ascending,
 as in "labels" | 
| double | falsePositiveRate(double label)Returns false positive rate for a given label (category) | 
| double | fMeasure()Deprecated. 
 Use accuracy. Since 2.0.0. | 
| double | fMeasure(double label)Returns f1-measure for a given label (category) | 
| double | fMeasure(double label,
        double beta)Returns f-measure for a given label (category) | 
| double[] | labels()Returns the sequence of labels in ascending order | 
| double | precision()Deprecated. 
 Use accuracy. Since 2.0.0. | 
| double | precision(double label)Returns precision for a given label (category) | 
| double | recall()Deprecated. 
 Use accuracy. Since 2.0.0. | 
| double | recall(double label)Returns recall for a given label (category) | 
| double | truePositiveRate(double label)Returns true positive rate for a given label (category) | 
| double | weightedFalsePositiveRate()Returns weighted false positive rate | 
| double | weightedFMeasure()Returns weighted averaged f1-measure | 
| double | weightedFMeasure(double beta)Returns weighted averaged f-measure | 
| double | weightedPrecision()Returns weighted averaged precision | 
| double | weightedRecall()Returns weighted averaged recall
 (equals to precision, recall and f-measure) | 
| double | weightedTruePositiveRate()Returns weighted true positive rate
 (equals to precision, recall and f-measure) | 
public MulticlassMetrics(RDD<scala.Tuple2<java.lang.Object,java.lang.Object>> predictionAndLabels)
public Matrix confusionMatrix()
public double truePositiveRate(double label)
label - the label.public double falsePositiveRate(double label)
label - the label.public double precision(double label)
label - the label.public double recall(double label)
label - the label.public double fMeasure(double label,
              double beta)
label - the label.beta - the beta parameter.public double fMeasure(double label)
label - the label.public double precision()
public double recall()
public double fMeasure()
public double accuracy()
public double weightedTruePositiveRate()
public double weightedFalsePositiveRate()
public double weightedRecall()
public double weightedPrecision()
public double weightedFMeasure(double beta)
beta - the beta parameter.public double weightedFMeasure()
public double[] labels()