Package org.apache.spark.ml.feature
Class MinMaxScaler
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- MinMaxScalerParams,- Params,- HasInputCol,- HasOutputCol,- DefaultParamsWritable,- Identifiable,- MLWritable
public class MinMaxScaler
extends Estimator<MinMaxScalerModel>
implements MinMaxScalerParams, DefaultParamsWritable
Rescale each feature individually to a common range [min, max] linearly using column summary
 statistics, which is also known as min-max normalization or Rescaling. The rescaled value for
 feature E is calculated as:
 
$$ Rescaled(e_i) = \frac{e_i - E_{min}}{E_{max} - E_{min}} * (max - min) + min $$
For the case \(E_{max} == E_{min}\), \(Rescaled(e_i) = 0.5 * (max + min)\).
- See Also:
- Note:
- Since zero values will probably be transformed to non-zero values, output of the transformer will be DenseVector even for sparse input.
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Fits a model to the input data.inputCol()Param for input column name.static MinMaxScalermax()upper bound after transformation, shared by all features Default: 1.0min()lower bound after transformation, shared by all features Default: 0.0Param for output column name.static MLReader<T>read()setInputCol(String value) setMax(double value) setMin(double value) setOutputCol(String value) transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Methods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritablewriteMethods inherited from interface org.apache.spark.ml.param.shared.HasInputColgetInputColMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputColgetOutputColMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoStringMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.feature.MinMaxScalerParamsgetMax, getMin, validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Constructor Details- 
MinMaxScaler
- 
MinMaxScalerpublic MinMaxScaler()
 
- 
- 
Method Details- 
load
- 
read
- 
minDescription copied from interface:MinMaxScalerParamslower bound after transformation, shared by all features Default: 0.0- Specified by:
- minin interface- MinMaxScalerParams
- Returns:
- (undocumented)
 
- 
maxDescription copied from interface:MinMaxScalerParamsupper bound after transformation, shared by all features Default: 1.0- Specified by:
- maxin interface- MinMaxScalerParams
- Returns:
- (undocumented)
 
- 
outputColDescription copied from interface:HasOutputColParam for output column name.- Specified by:
- outputColin interface- HasOutputCol
- Returns:
- (undocumented)
 
- 
inputColDescription copied from interface:HasInputColParam for input column name.- Specified by:
- inputColin interface- HasInputCol
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
setInputCol
- 
setOutputCol
- 
setMin
- 
setMax
- 
fitDescription copied from class:EstimatorFits a model to the input data.- Specified by:
- fitin class- Estimator<MinMaxScalerModel>
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Estimator<MinMaxScalerModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
 
-