Class LinearSVCModel
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Transformer
org.apache.spark.ml.Model<M>
org.apache.spark.ml.PredictionModel<FeaturesType,M>
 
org.apache.spark.ml.classification.ClassificationModel<Vector,LinearSVCModel>
 
org.apache.spark.ml.classification.LinearSVCModel
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- ClassifierParams,- LinearSVCParams,- Params,- HasAggregationDepth,- HasFeaturesCol,- HasFitIntercept,- HasLabelCol,- HasMaxBlockSizeInMB,- HasMaxIter,- HasPredictionCol,- HasRawPredictionCol,- HasRegParam,- HasStandardization,- HasThreshold,- HasTol,- HasWeightCol,- PredictorParams,- HasTrainingSummary<LinearSVCTrainingSummary>,- Identifiable,- MLWritable
public class LinearSVCModel
extends ClassificationModel<Vector,LinearSVCModel>
implements LinearSVCParams, MLWritable, HasTrainingSummary<LinearSVCTrainingSummary> 
Linear SVM Model trained by 
LinearSVC- See Also:
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Method SummaryModifier and TypeMethodDescriptionfinal IntParamParam for suggested depth for treeAggregate (>= 2).Creates a copy of this instance with the same UID and some extra params.Evaluates the model on a test dataset.final BooleanParamParam for whether to fit an intercept term.doublestatic LinearSVCModelfinal DoubleParamParam for Maximum memory in MB for stacking input data into blocks.final IntParammaxIter()Param for maximum number of iterations (>= 0).intNumber of classes (values which the label can take).intReturns the number of features the model was trained on.doublePredict label for the given features.predictRaw(Vector features) Raw prediction for each possible label.static MLReader<LinearSVCModel>read()final DoubleParamregParam()Param for regularization parameter (>= 0).setThreshold(double value) final BooleanParamParam for whether to standardize the training features before fitting the model.summary()Gets summary of model on training set.final DoubleParamParam for threshold in binary classification prediction.final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).toString()uid()An immutable unique ID for the object and its derivatives.Param for weight column name.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.classification.ClassificationModelrawPredictionCol, setRawPredictionCol, transform, transformImpl, transformSchemaMethods inherited from class org.apache.spark.ml.PredictionModelfeaturesCol, labelCol, predictionCol, setFeaturesCol, setPredictionColMethods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.classification.ClassifierParamsvalidateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.param.shared.HasAggregationDepthgetAggregationDepthMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColfeaturesCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasFitInterceptgetFitInterceptMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxBlockSizeInMBgetMaxBlockSizeInMBMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxItergetMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionColgetRawPredictionCol, rawPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasRegParamgetRegParamMethods inherited from interface org.apache.spark.ml.param.shared.HasStandardizationgetStandardizationMethods inherited from interface org.apache.spark.ml.param.shared.HasThresholdgetThresholdMethods inherited from interface org.apache.spark.ml.util.HasTrainingSummaryhasSummary, setSummaryMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightColMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Method Details- 
read
- 
load
- 
thresholdDescription copied from interface:LinearSVCParamsParam for threshold in binary classification prediction. For LinearSVC, this threshold is applied to the rawPrediction, rather than a probability. This threshold can be any real number, where Inf will make all predictions 0.0 and -Inf will make all predictions 1.0. Default: 0.0- Specified by:
- thresholdin interface- HasThreshold
- Specified by:
- thresholdin interface- LinearSVCParams
- Returns:
- (undocumented)
 
- 
maxBlockSizeInMBDescription copied from interface:HasMaxBlockSizeInMBParam for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..- Specified by:
- maxBlockSizeInMBin interface- HasMaxBlockSizeInMB
- Returns:
- (undocumented)
 
- 
aggregationDepthDescription copied from interface:HasAggregationDepthParam for suggested depth for treeAggregate (>= 2).- Specified by:
- aggregationDepthin interface- HasAggregationDepth
- Returns:
- (undocumented)
 
- 
weightColDescription copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
- weightColin interface- HasWeightCol
- Returns:
- (undocumented)
 
- 
standardizationDescription copied from interface:HasStandardizationParam for whether to standardize the training features before fitting the model.- Specified by:
- standardizationin interface- HasStandardization
- Returns:
- (undocumented)
 
- 
tolDescription copied from interface:HasTolParam for the convergence tolerance for iterative algorithms (>= 0).
- 
fitInterceptDescription copied from interface:HasFitInterceptParam for whether to fit an intercept term.- Specified by:
- fitInterceptin interface- HasFitIntercept
- Returns:
- (undocumented)
 
- 
maxIterDescription copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
- maxIterin interface- HasMaxIter
- Returns:
- (undocumented)
 
- 
regParamDescription copied from interface:HasRegParamParam for regularization parameter (>= 0).- Specified by:
- regParamin interface- HasRegParam
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
coefficients
- 
interceptpublic double intercept()
- 
numClassespublic int numClasses()Description copied from class:ClassificationModelNumber of classes (values which the label can take).- Specified by:
- numClassesin class- ClassificationModel<Vector,- LinearSVCModel> 
 
- 
numFeaturespublic int numFeatures()Description copied from class:PredictionModelReturns the number of features the model was trained on. If unknown, returns -1- Overrides:
- numFeaturesin class- PredictionModel<Vector,- LinearSVCModel> 
 
- 
setThreshold
- 
summaryGets summary of model on training set. An exception is thrown ifhasSummaryis false.- Specified by:
- summaryin interface- HasTrainingSummary<LinearSVCTrainingSummary>
- Returns:
- (undocumented)
 
- 
evaluateEvaluates the model on a test dataset.- Parameters:
- dataset- Test dataset to evaluate model on.
- Returns:
- (undocumented)
 
- 
predictDescription copied from class:ClassificationModelPredict label for the given features. This method is used to implementtransform()and outputPredictionModel.predictionCol().This default implementation for classification predicts the index of the maximum value from predictRaw().- Overrides:
- predictin class- ClassificationModel<Vector,- LinearSVCModel> 
- Parameters:
- features- (undocumented)
- Returns:
- (undocumented)
 
- 
predictRawDescription copied from class:ClassificationModelRaw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implementtransform()and outputClassificationModel.rawPredictionCol().- Specified by:
- predictRawin class- ClassificationModel<Vector,- LinearSVCModel> 
- Parameters:
- features- (undocumented)
- Returns:
- vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Model<LinearSVCModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
writeDescription copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
- writein interface- MLWritable
- Returns:
- (undocumented)
 
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
 
-