Package org.apache.spark.ml.tuning
Class CrossValidatorModel
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- Params,- HasSeed,- CrossValidatorParams,- ValidatorParams,- Identifiable,- MLWritable
public class CrossValidatorModel
extends Model<CrossValidatorModel>
implements CrossValidatorParams, MLWritable
CrossValidatorModel contains the model with the highest average cross-validation
 metric across folds and uses this model to transform input data. CrossValidatorModel
 also tracks the metrics for each param map evaluated.
 
 param:  bestModel The best model selected from k-fold cross validation.
 param:  avgMetrics Average cross-validation metrics for each paramMap in
                   CrossValidator.estimatorParamMaps, in the corresponding order.
- See Also:
- 
Nested Class SummaryNested ClassesModifier and TypeClassDescriptionstatic final classWriter for CrossValidatorModel.Nested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Method SummaryModifier and TypeMethodDescriptiondouble[]Model<?>Creates a copy of this instance with the same UID and some extra params.param for the estimator to be validatedparam for estimator param mapsparam for the evaluator used to select hyper-parameters that maximize the validated metricfoldCol()Param for the column name of user specified fold number.booleanstatic CrossValidatorModelnumFolds()Param for number of folds for cross validation.static MLReader<CrossValidatorModel>read()final LongParamseed()Param for random seed.Model<?>[][]toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.tuning.CrossValidatorParamsgetFoldCol, getNumFoldsMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.tuning.ValidatorParamsgetEstimator, getEstimatorParamMaps, getEvaluator, logTuningParams, transformSchemaImpl
- 
Method Details- 
read
- 
load
- 
numFoldsDescription copied from interface:CrossValidatorParamsParam for number of folds for cross validation. Must be >= 2. Default: 3- Specified by:
- numFoldsin interface- CrossValidatorParams
- Returns:
- (undocumented)
 
- 
foldColDescription copied from interface:CrossValidatorParamsParam for the column name of user specified fold number. Once this is specified,CrossValidatorwon't do random k-fold split. Note that this column should be integer type with range [0, numFolds) and Spark will throw exception on out-of-range fold numbers.- Specified by:
- foldColin interface- CrossValidatorParams
- Returns:
- (undocumented)
 
- 
estimatorDescription copied from interface:ValidatorParamsparam for the estimator to be validated- Specified by:
- estimatorin interface- ValidatorParams
- Returns:
- (undocumented)
 
- 
estimatorParamMapsDescription copied from interface:ValidatorParamsparam for estimator param maps- Specified by:
- estimatorParamMapsin interface- ValidatorParams
- Returns:
- (undocumented)
 
- 
evaluatorDescription copied from interface:ValidatorParamsparam for the evaluator used to select hyper-parameters that maximize the validated metric- Specified by:
- evaluatorin interface- ValidatorParams
- Returns:
- (undocumented)
 
- 
seedDescription copied from interface:HasSeedParam for random seed.
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
bestModel
- 
avgMetricspublic double[] avgMetrics()
- 
subModels- Returns:
- submodels represented in two dimension array. The index of outer array is the fold index, and the index of inner array corresponds to the ordering of estimatorParamMaps
- Throws:
- IllegalArgumentException- if subModels are not available. To retrieve subModels, make sure to set collectSubModels to true before fitting.
 
- 
hasSubModelspublic boolean hasSubModels()
- 
transformDescription copied from class:TransformerTransforms the input dataset.- Specified by:
- transformin class- Transformer
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Model<CrossValidatorModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
writeDescription copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
- writein interface- MLWritable
- Returns:
- (undocumented)
 
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
 
-