object MLUtils extends Logging
Helper methods to load, save and pre-process data used in MLLib.
- Annotations
- @Since("0.8.0")
- Source
- MLUtils.scala
- Alphabetic
- By Inheritance
- MLUtils
- Logging
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def appendBias(vector: Vector): VectorReturns a new vector with 1.0(bias) appended to the input vector.Returns a new vector with 1.0(bias) appended to the input vector.- Annotations
- @Since("1.0.0")
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def convertMatrixColumnsFromML(dataset: Dataset[_], cols: String*): DataFrameConverts matrix columns in an input Dataset to the org.apache.spark.mllib.linalg.Matrix type from the new org.apache.spark.ml.linalg.Matrix type under the spark.mlpackage.Converts matrix columns in an input Dataset to the org.apache.spark.mllib.linalg.Matrix type from the new org.apache.spark.ml.linalg.Matrix type under the spark.mlpackage.- dataset
- input dataset 
- cols
- a list of matrix columns to be converted. Old matrix columns will be ignored. If unspecified, all new matrix columns will be converted except nested ones. 
- returns
- the input - DataFramewith new matrix columns converted to the old matrix type
 - Annotations
- @Since("2.0.0") @varargs()
 
-    def convertMatrixColumnsToML(dataset: Dataset[_], cols: String*): DataFrameConverts Matrix columns in an input Dataset from the org.apache.spark.mllib.linalg.Matrix type to the new org.apache.spark.ml.linalg.Matrix type under the spark.mlpackage.Converts Matrix columns in an input Dataset from the org.apache.spark.mllib.linalg.Matrix type to the new org.apache.spark.ml.linalg.Matrix type under the spark.mlpackage.- dataset
- input dataset 
- cols
- a list of matrix columns to be converted. New matrix columns will be ignored. If unspecified, all old matrix columns will be converted except nested ones. 
- returns
- the input - DataFramewith old matrix columns converted to the new matrix type
 - Annotations
- @Since("2.0.0") @varargs()
 
-    def convertVectorColumnsFromML(dataset: Dataset[_], cols: String*): DataFrameConverts vector columns in an input Dataset to the org.apache.spark.mllib.linalg.Vector type from the new org.apache.spark.ml.linalg.Vector type under the spark.mlpackage.Converts vector columns in an input Dataset to the org.apache.spark.mllib.linalg.Vector type from the new org.apache.spark.ml.linalg.Vector type under the spark.mlpackage.- dataset
- input dataset 
- cols
- a list of vector columns to be converted. Old vector columns will be ignored. If unspecified, all new vector columns will be converted except nested ones. 
- returns
- the input - DataFramewith new vector columns converted to the old vector type
 - Annotations
- @Since("2.0.0") @varargs()
 
-    def convertVectorColumnsToML(dataset: Dataset[_], cols: String*): DataFrameConverts vector columns in an input Dataset from the org.apache.spark.mllib.linalg.Vector type to the new org.apache.spark.ml.linalg.Vector type under the spark.mlpackage.Converts vector columns in an input Dataset from the org.apache.spark.mllib.linalg.Vector type to the new org.apache.spark.ml.linalg.Vector type under the spark.mlpackage.- dataset
- input dataset 
- cols
- a list of vector columns to be converted. New vector columns will be ignored. If unspecified, all old vector columns will be converted except nested ones. 
- returns
- the input - DataFramewith old vector columns converted to the new vector type
 - Annotations
- @Since("2.0.0") @varargs()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def kFold(df: DataFrame, numFolds: Int, foldColName: String): Array[(RDD[Row], RDD[Row])]Version of kFold()taking a fold column name.Version of kFold()taking a fold column name.- Annotations
- @Since("3.1.0")
 
-    def kFold[T](rdd: RDD[T], numFolds: Int, seed: Long)(implicit arg0: ClassTag[T]): Array[(RDD[T], RDD[T])]Version of kFold()taking a Long seed.Version of kFold()taking a Long seed.- Annotations
- @Since("2.0.0")
 
-    def kFold[T](rdd: RDD[T], numFolds: Int, seed: Int)(implicit arg0: ClassTag[T]): Array[(RDD[T], RDD[T])]Return a k element array of pairs of RDDs with the first element of each pair containing the training data, a complement of the validation data and the second element, the validation data, containing a unique 1/kth of the data. Return a k element array of pairs of RDDs with the first element of each pair containing the training data, a complement of the validation data and the second element, the validation data, containing a unique 1/kth of the data. Where k=numFolds. - Annotations
- @Since("1.0.0")
 
-    def loadLabeledPoints(sc: SparkContext, dir: String): RDD[LabeledPoint]Loads labeled points saved using RDD[LabeledPoint].saveAsTextFilewith the default number of partitions.Loads labeled points saved using RDD[LabeledPoint].saveAsTextFilewith the default number of partitions.- Annotations
- @Since("1.1.0")
 
-    def loadLabeledPoints(sc: SparkContext, path: String, minPartitions: Int): RDD[LabeledPoint]Loads labeled points saved using RDD[LabeledPoint].saveAsTextFile.Loads labeled points saved using RDD[LabeledPoint].saveAsTextFile.- sc
- Spark context 
- path
- file or directory path in any Hadoop-supported file system URI 
- minPartitions
- min number of partitions 
- returns
- labeled points stored as an RDD[LabeledPoint] 
 - Annotations
- @Since("1.1.0")
 
-    def loadLibSVMFile(sc: SparkContext, path: String): RDD[LabeledPoint]Loads binary labeled data in the LIBSVM format into an RDD[LabeledPoint], with number of features determined automatically and the default number of partitions. Loads binary labeled data in the LIBSVM format into an RDD[LabeledPoint], with number of features determined automatically and the default number of partitions. - Annotations
- @Since("1.0.0")
 
-    def loadLibSVMFile(sc: SparkContext, path: String, numFeatures: Int): RDD[LabeledPoint]Loads labeled data in the LIBSVM format into an RDD[LabeledPoint], with the default number of partitions. Loads labeled data in the LIBSVM format into an RDD[LabeledPoint], with the default number of partitions. - Annotations
- @Since("1.0.0")
 
-    def loadLibSVMFile(sc: SparkContext, path: String, numFeatures: Int, minPartitions: Int): RDD[LabeledPoint]Loads labeled data in the LIBSVM format into an RDD[LabeledPoint]. Loads labeled data in the LIBSVM format into an RDD[LabeledPoint]. The LIBSVM format is a text-based format used by LIBSVM and LIBLINEAR. Each line represents a labeled sparse feature vector using the following format: label index1:value1 index2:value2 ... where the indices are one-based and in ascending order. This method parses each line into a org.apache.spark.mllib.regression.LabeledPoint, where the feature indices are converted to zero-based. - sc
- Spark context 
- path
- file or directory path in any Hadoop-supported file system URI 
- numFeatures
- number of features, which will be determined from the input data if a nonpositive value is given. This is useful when the dataset is already split into multiple files and you want to load them separately, because some features may not present in certain files, which leads to inconsistent feature dimensions. 
- minPartitions
- min number of partitions 
- returns
- labeled data stored as an RDD[LabeledPoint] 
 - Annotations
- @Since("1.0.0")
 
-    def loadVectors(sc: SparkContext, path: String): RDD[Vector]Loads vectors saved using RDD[Vector].saveAsTextFilewith the default number of partitions.Loads vectors saved using RDD[Vector].saveAsTextFilewith the default number of partitions.- Annotations
- @Since("1.1.0")
 
-    def loadVectors(sc: SparkContext, path: String, minPartitions: Int): RDD[Vector]Loads vectors saved using RDD[Vector].saveAsTextFile.Loads vectors saved using RDD[Vector].saveAsTextFile.- sc
- Spark context 
- path
- file or directory path in any Hadoop-supported file system URI 
- minPartitions
- min number of partitions 
- returns
- vectors stored as an RDD[Vector] 
 - Annotations
- @Since("1.1.0")
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-  def optimizerFailed(instr: Instrumentation, optimizerClass: Class[_]): Unit
-    def saveAsLibSVMFile(data: RDD[LabeledPoint], dir: String): UnitSave labeled data in LIBSVM format. Save labeled data in LIBSVM format. - data
- an RDD of LabeledPoint to be saved 
- dir
- directory to save the data 
 - Annotations
- @Since("1.0.0")
- See also
- org.apache.spark.mllib.util.MLUtils.loadLibSVMFile
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    def withLogContext(context: Map[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)