MaxAbsScalerModel#
- class pyspark.ml.connect.feature.MaxAbsScalerModel(max_abs_values=None, n_samples_seen=None)[source]#
- Model fitted by MaxAbsScaler. - New in version 3.5.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of inputCol or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of outputCol or its default value. - getParam(paramName)- Gets a param by its name. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Load Estimator / Transformer / Model / Evaluator from provided cloud storage path. - loadFromLocal(path)- Load Estimator / Transformer / Model / Evaluator from provided local path. - save(path, *[, overwrite])- Save Estimator / Transformer / Model / Evaluator to provided cloud storage path. - saveToLocal(path, *[, overwrite])- Save Estimator / Transformer / Model / Evaluator to provided local path. - set(param, value)- Sets a parameter in the embedded param map. - transform(dataset[, params])- Transforms the input dataset. - Attributes - Returns all params ordered by name. - Methods Documentation - clear(param)#
- Clears a param from the param map if it has been explicitly set. 
 - copy(extra=None)#
- Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using - copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.- Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- Params
- Copy of this instance 
 
 
 - explainParam(param)#
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - explainParams()#
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - extractParamMap(extra=None)#
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - getInputCol()#
- Gets the value of inputCol or its default value. 
 - getOrDefault(param)#
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - getOutputCol()#
- Gets the value of outputCol or its default value. 
 - getParam(paramName)#
- Gets a param by its name. 
 - hasDefault(param)#
- Checks whether a param has a default value. 
 - hasParam(paramName)#
- Tests whether this instance contains a param with a given (string) name. 
 - isDefined(param)#
- Checks whether a param is explicitly set by user or has a default value. 
 - isSet(param)#
- Checks whether a param is explicitly set by user. 
 - classmethod load(path)#
- Load Estimator / Transformer / Model / Evaluator from provided cloud storage path. - New in version 3.5.0. 
 - classmethod loadFromLocal(path)#
- Load Estimator / Transformer / Model / Evaluator from provided local path. - New in version 3.5.0. 
 - save(path, *, overwrite=False)#
- Save Estimator / Transformer / Model / Evaluator to provided cloud storage path. - New in version 3.5.0. 
 - saveToLocal(path, *, overwrite=False)#
- Save Estimator / Transformer / Model / Evaluator to provided local path. - New in version 3.5.0. 
 - set(param, value)#
- Sets a parameter in the embedded param map. 
 - transform(dataset, params=None)#
- Transforms the input dataset. The dataset can be either pandas dataframe or spark dataframe, if it is a spark DataFrame, the result of transformation is a new spark DataFrame that contains all existing columns and output columns with names, If it is a pandas DataFrame, the result of transformation is a shallow copy of the input pandas dataframe with output columns with names. - Note: Transformers does not allow output column having the same name with existing columns. - Parameters
- datasetpyspark.sql.DataFrameor py:class:pandas.DataFrame
- input dataset. 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrameor py:class:pandas.DataFrame
- transformed dataset, the type of output dataframe is consistent with input dataframe. 
 
 
 - Attributes Documentation - inputCol = Param(parent='undefined', name='inputCol', doc='input column name.')#
 - outputCol = Param(parent='undefined', name='outputCol', doc='output column name.')#
 - params#
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - uid#
- A unique id for the object.