pyspark.sql.DataFrame.withColumnRenamed#
- DataFrame.withColumnRenamed(existing, new)[source]#
- Returns a new - DataFrameby renaming an existing column. This is a no-op if the schema doesn’t contain the given column name.- New in version 1.3.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- existingstr
- The name of the existing column to be renamed. 
- newstr
- The new name to be assigned to the column. 
 
- Returns
- DataFrame
- A new DataFrame with renamed column. 
 
 - See also - Examples - >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) - Example 1: Rename a single column - >>> df.withColumnRenamed("age", "age2").show() +----+-----+ |age2| name| +----+-----+ | 2|Alice| | 5| Bob| +----+-----+ - Example 2: Rename a column that does not exist (no-op) - >>> df.withColumnRenamed("non_existing", "new_name").show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ - Example 3: Rename multiple columns - >>> df.withColumnRenamed("age", "age2").withColumnRenamed("name", "name2").show() +----+-----+ |age2|name2| +----+-----+ | 2|Alice| | 5| Bob| +----+-----+