pyspark.pandas.concat#
- pyspark.pandas.concat(objs, axis=0, join='outer', ignore_index=False, sort=False)[source]#
- Concatenate pandas-on-Spark objects along a particular axis with optional set logic along the other axes. - Parameters
- objsa sequence of Series or DataFrame
- Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised 
- axis{0/’index’, 1/’columns’}, default 0
- The axis to concatenate along. 
- join{‘inner’, ‘outer’}, default ‘outer’
- How to handle indexes on other axis (or axes). 
- ignore_indexbool, default False
- If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, …, n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join. 
- sortbool, default False
- Sort non-concatenation axis if it is not already aligned. 
 
- Returns
- object, type of objs
- When concatenating all - Seriesalong the index (axis=0), a- Seriesis returned. When- objscontains at least one- DataFrame, a- DataFrameis returned. When concatenating along the columns (axis=1), a- DataFrameis returned.
 
 - See also - DataFrame.join
- Join DataFrames using indexes. 
- DataFrame.merge
- Merge DataFrames by indexes or columns. 
 - Examples - >>> from pyspark.pandas.config import set_option, reset_option >>> set_option("compute.ops_on_diff_frames", True) - Combine two - Series.- >>> s1 = ps.Series(['a', 'b']) >>> s2 = ps.Series(['c', 'd']) >>> ps.concat([s1, s2]) 0 a 1 b 0 c 1 d dtype: object - Clear the existing index and reset it in the result by setting the - ignore_indexoption to- True.- >>> ps.concat([s1, s2], ignore_index=True) 0 a 1 b 2 c 3 d dtype: object - Combine two - DataFrameobjects with identical columns.- >>> df1 = ps.DataFrame([['a', 1], ['b', 2]], ... columns=['letter', 'number']) >>> df1 letter number 0 a 1 1 b 2 >>> df2 = ps.DataFrame([['c', 3], ['d', 4]], ... columns=['letter', 'number']) >>> df2 letter number 0 c 3 1 d 4 - >>> ps.concat([df1, df2]) letter number 0 a 1 1 b 2 0 c 3 1 d 4 - Combine - DataFrameand- Seriesobjects with different columns.- >>> ps.concat([df2, s1]) letter number 0 0 c 3.0 None 1 d 4.0 None 0 None NaN a 1 None NaN b - Combine - DataFrameobjects with overlapping columns and return everything. Columns outside the intersection will be filled with- Nonevalues.- >>> df3 = ps.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']], ... columns=['letter', 'number', 'animal']) >>> df3 letter number animal 0 c 3 cat 1 d 4 dog - >>> ps.concat([df1, df3]) letter number animal 0 a 1 None 1 b 2 None 0 c 3 cat 1 d 4 dog - Sort the columns. - >>> ps.concat([df1, df3], sort=True) animal letter number 0 None a 1 1 None b 2 0 cat c 3 1 dog d 4 - Combine - DataFrameobjects with overlapping columns and return only those that are shared by passing- innerto the- joinkeyword argument.- >>> ps.concat([df1, df3], join="inner") letter number 0 a 1 1 b 2 0 c 3 1 d 4 - >>> df4 = ps.DataFrame([['bird', 'polly'], ['monkey', 'george']], ... columns=['animal', 'name']) - Combine with column axis. - >>> ps.concat([df1, df4], axis=1) letter number animal name 0 a 1 bird polly 1 b 2 monkey george - >>> reset_option("compute.ops_on_diff_frames")