pyspark.pandas.Series.count#
- Series.count(axis=None, numeric_only=False)#
- Count non-NA cells for each column. - The values None, NaN are considered NA. - Parameters
- axis: {0 or ‘index’, 1 or ‘columns’}, default 0
- If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row. 
- numeric_only: bool, default False
- If True, include only float, int, boolean columns. This parameter is mainly for pandas compatibility. 
 
- Returns
- max: scalar for a Series, and a Series for a DataFrame.
 
 - See also - DataFrame.shape
- Number of DataFrame rows and columns (including NA elements). 
- DataFrame.isna
- Boolean same-sized DataFrame showing places of NA elements. 
 - Examples - Constructing DataFrame from a dictionary: - >>> df = ps.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}, ... columns=["Person", "Age", "Single"]) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False - Notice the uncounted NA values: - >>> df.count() Person 5 Age 4 Single 5 dtype: int64 - >>> df.count(axis=1) 0 3 1 2 2 3 3 3 4 3 dtype: int64 - On a Series: - >>> df['Person'].count() 5 - >>> df['Age'].count() 4