pyspark.pandas.DataFrame.applymap#
- DataFrame.applymap(func)[source]#
- Apply a function to a Dataframe elementwise. - This method applies a function that accepts and returns a scalar to every element of a DataFrame. - Deprecated since version 4.0.0. - Note - this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. - To avoid this, specify return type in - func, for instance, as below:- >>> def square(x) -> np.int32: ... return x ** 2 - pandas-on-Spark uses return type hints and does not try to infer the type. - Parameters
- funccallable
- Python function returns a single value from a single value. 
 
- Returns
- DataFrame
- Transformed DataFrame. 
 
 - Examples - >>> df = ps.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 - >>> def str_len(x) -> int: ... return len(str(x)) >>> df.applymap(str_len) 0 1 0 3 4 1 5 5 - >>> def power(x) -> float: ... return x ** 2 >>> df.applymap(power) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 - You can omit type hints and let pandas-on-Spark infer its type. - >>> df.applymap(lambda x: x ** 2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489